- Quickstart p.307 #19, 23
- Lesson
Chapter 5 Analytic Trigonometry
(5.1) Using Fundamental Identities
Section Objectives: Students will know how to use fundamental trigonometric identities to evaluate trigonometric functions and simplify trigonometric expressions.- Introduction (p. 376)
Review the following list of identities that we have covered so far.
Reciprocal Identities
sin u = 1 / csc u
cos u = 1 / secu
tan u = 1 / cot u
csc u = 1 / sin u
sec u = 1 / cosu
cot u = 1 / tan u
Quotient Identities
tan u = sin u/cosu
cot u = cos u/sin u
Pythagorean Identities
sin2u + cos2u = 1
tan2u + 1 = sec2u
1 + cot2u = csc2u .
Cofunctions Identities
sin (90° - u) = cos u
tan (90° - u) = cot u
sec (90° - u) = csc u
cos (90° - u) = sin u
cot (90° - u) = tan u
csc (90° - u) = sec u
Even/Odd Identities
sin (-u) = - sin u
cos (-u) = cos u
tan (-u) = - tan u
cot (-u) = - cot u
sec (-u) = sec u
csc (-u) = - csc u - Using the Fundamental Identities (pp 377 - 380)
- Example 1. If csc u = -5/3 and cos u > 0, find the values of the other five trigonometric functions.
sin u = -3/5
cos2u = 1- sin2u = 1- (-3/5)2 = 16/25
cos u = 4/5
sec u = 5/4
tan u = sin u/cosu = (-3/5) / (4/5) = -3/4
cot u = -4/3 - Example 2. Simplify the following
- csc2x cot x – cot x
= (csc2 x – 1)cot x = (cot2 x)cot x = cot3x - tan x sin x + cos x
= (sin x / cos x)sin x + cos x
= (sin2x/cosx) + cosx
= (sin2x/cosx) + (cos2x/cosx)
= (sin2x + cos2x)/cos x
= 1/cos x
= sec x - (sec t/tan t) - (tant/1+ sec t)
= [sec t(1+ sec t)- tan2t]/[tant(1+ sec t)]
= [sec t + sec2t - tan2t]/tan t(1+ sec t)
= (sec t + 1)/[tant(1 + sec t)]
= 1/tan t
= cot t
- Example 3. Factor the following trigonometric expressions
- cos2x – 1
= (cos x + 1)(cos x – 1)
b) sin2u – 3sin u – 10
= (sin u + 2)(sin u – 5)
c) sec2t – tan t – 3
= (tan2t + 1) – tan t – 3
= tan2t – tan t – 2
= (tan t + 1)(tan t – 2) - Example 4. Rewrite 1/(sec x -1) so that it is not a fraction.
1/(sec x -1) = [1/(sec x -1)] × [(sec x + 1)/(sec x + 1)]
= (sec x + 1)/(sec2 x - 1)
= (sec x +1)/tan 2x
= (sec x/tan2 x) + (1/tan2x)
= [(1/cosx)(1/tanx)(1/tanx)] + (1/tan2x)
= [(1/cosx)(cosx/sinx)(1/tanx)] + (1/tan2x)
= [(1/sinx)(1/tanx)] + (1/tan2x)
= cot x csc x + cot2x
- Example 5. Use the substitution x = 3sin u, 0 < u < p/2,
to express √(9 - x2) as a function of u.
√(9 - x2)
= √(9 -(3sin u)2)
= √(9 - 9sin2 u)
= 3 √(1- sin2 u)
= 3 √(cos2 u)
= 3cosu
- Example 1. If csc u = -5/3 and cos u > 0, find the values of the other five trigonometric functions.
- Introduction (p. 376)
- Homework p.381 - 383 #1 - 70 x 3's (Due Thursday)
16 years ago
No comments:
Post a Comment